

MEAP Edition
Manning Early Access Program

Reactive Design Patterns
Version 1

Copyright 2014 Manning Publications

For more information on this and other Manning titles go to
www.manning.com

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

http://www.manning.com
http://www.manning-sandbox.com/forum.jspa?forumID=909

Welcome

Dear Reader,

Thank you for purchasing the MEAP for Reactive Design Patterns.
We are very excited to have this book ready for the public at a time
when Reactive is beginning to blossom in the technical community,
and we are greatly looking forward to continuing our work towards its
eventual release. This is an intermediate level book for any developer,
architect or technical manager who is looking to leverage reactive
technologies to deliver the best solutions possible for their users.

We have worked hard to make sure that we not only explain what
the primary concerns of reactive applications are, but also what you
must do and what tools you must use in order to build a reactive
application on your own.

We are initially releasing the first two chapters of the book. Chapter
1 is focused on explaining the reasoning as to why being reactive is so
important in application architecture, while chapter 2 delves into the
concepts and tools that comprise such applications in detail. Chapter 3
is a deeper dive into the philosophy behind the translation of the four
tenets of Reactive Programming into the implementation techniques
discussed in the rest of the book.

Looking ahead to the chapters we will be working on next, we will
be drilling down into the details of how to leverage each of the
concepts in Reactive even further. By the end of Chapter 4, you will
have learned on how to test a reactive application to make sure that it is
responsive, resilient and scalable. Chapter 5 will discuss fault tolerance
and supervision in practice, with Chapter 6 discussing distributed
resource management and its impact on consistency.

The final three chapters will focus on best practices and patterns.
Chapter 7 will introduce you to patterns focused on flow control in
messaging, while Flow Control itself will be addressed in Chapter 8.
Chapter 9 will end the book with a discussion of patterns that have
proven valuable when writing Actor-based systems.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

http://www.manning-sandbox.com/forum.jspa?forumID=909

Both of us will be focused on delivering either a new chapter or an
update to an existing one about once a month. As you read the book,
we hope you will visit the Author Online forum, where both of us will
be reading and responding to your comments and questions. Your
feedback will be instrumental in making this best book it possibly can
be, and we appreciate any criticism you can provide.

Roland Kuhn
Jamie Allen

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

http://www.manning-sandbox.com/forum.jspa?forumID=909

brief contents

1. Why Reactive?

2. Tools of the Trade

3. The Philosophy in a Nutshell

4. Testing Reactive Systems — Divide & Conquer

5. Fault Tolerance

6. Resource Management

7. Message Flow Patterns

8. Flow Control

9. Patterns for Writing Actors

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

http://www.manning-sandbox.com/forum.jspa?forumID=909

1
The purpose of computers is to support us, both in our daily lives and when
pushing the boundaries of what is possible. This has been the case since their

inception more than a hundred years ago : computers are meant to perform1

repetitive tasks for us, quickly and without human errors. With this in mind it
becomes obvious that the first of the reactive traits— —is as old asresponsiveness
programming itself. When we give a computer a task we want the response back as
soon as possible; put another way, the computer must react to its user.

Footnote 1 m Charles Babbage’s analytical engine was described already 1837, extending the capabilities of
his difference engine towards allowing general purpose programs including loops and conditional branches.

For a long time, a single computer was considered fast enough. Complicated
calculations like breaking the Enigma chiffre during World War II could take many
hours, but the alternative was to not be able to read the enemies’ radio
transmissions and therefore everyone was very happy with this performance.
Today we use computers pervasively in our lives and have become very impatient,
expecting responses immediately (or at least within the second). At the same time
the tasks we give to computers have become more complex—not in a mathematical
sense of pure computation, but in requesting the responses to be distilled from
enormous amounts of data. Take for example a web search which requires multiple
computers to collaborate on a single task. This principle is also several decades
old, we have been using computer networks for over forty years to solve problems
that are bigger than one machine alone can handle. But only recently has this
architecture been introduced into the design of a single computer in the form of
multi-core CPUs, possibly combined in multi-socket servers.

All this taken together means that the distribution of a single program across
multiple processor cores—be that within a single machine or across a

Why Reactive?

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

1

http://www.manning-sandbox.com/forum.jspa?forumID=909

network—has become commonplace. The size of such a deployment is defined by
how complex the processing task is and by the number of concurrent users to be
supported by the system. In former times, the latter number was rather small, in
many typical situations one human would use one computer to perform a certain
task. Nowadays the internet connects billions of people all across the world and
popular applications like social networks, search engines, personal blog services,
etc. are used by millions or even billions of users around the clock. This represents
a change in both scope and scale of what we expect our computers to do for us, and
therefore we need to refine and adapt our common application design and
implementation techniques.

In this introduction we started out from the desire to build systems that are
 to their users. Adding the fundamental requirement for distribution isresponsive

what makes us recognize the need for new (or as so often rediscovered)

architecture patterns: in the past we developed band-aids which allowed us to2

retain the illusion of single-threaded local processing while having it magically
executed on multiple cores or network nodes, but the gap between that illusion and
reality is becoming prohibitively large. The solution is to make the distributed,
concurrent nature of our applications explicit in the programming model, using it
to our advantage.

Footnote 2 m For example take Java EE services which allow you to transparently call remote services that are
wired in automatically, possibly even including distributed database transactions.

This book will teach you how to write systems that stay responsive in the face
of variable load, partial outages, program failure and more. We will see that this
requires adjustments in the way we think about and design our applications.
First—in the rest of this chapter—we take a thorough look at the four tenets of the

Reactive Manifesto , which was written to define a common vocabulary and to lay3

out the basic challenges which a modern computer system needs to meet:

Footnote 3 m http://reactivemanifesto.org/

it must react to its users (responsiveness)
it must react to failure and stay available (resilience)
it must react to variable load conditions (scalability)
it must react to events (event orientation)

As we will see in the following, the second and third points capture that the
system needs to stay responsive in the face of failure or stress, respectively, while
the fourth is a consequence of the first three in that the system needs to react to all

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

2

http://reactivemanifesto.org/
http://www.manning-sandbox.com/forum.jspa?forumID=909

kinds of events as they happen, without having a way to know beforehand which to
expect next.

In chapters two and three you will get to know several tools of the trade and the
philosophy behind their design, which will enable you to effectively use these tools
for implementing reactive designs. The different patterns which are emergent from
these designs are presented in chapters four to nine using these technologies,
therefore it will be helpful to have tried out the different tools you encounter
while reading chapter two. This book assumes that you are fluent in Java or Scala,
where the latter is used to present code examples throughout the book while Java
translations are available for download.

Before we dive right in, we need to establish a bit of terminology and introduce
an example application which we will use in the following.

Figure 1.1 Schematic view of a typical web application deployment with different
back-end services: the front-end server dispatches to different internal services, which in
turn make use of other services like storage back-ends or databases.

In the paragraphs above we have used the word “user” informally and mostly in the

1.1 Systems and their Users

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

3

http://www.manning-sandbox.com/forum.jspa?forumID=909

sense of humans who interact with a computer. This is without a doubt a very
important aspect, but we can generalize this: Figure 1.1depicts a typical
deployment of a web application. As an example, consider the GMail web
application. You interact only with your web browser in order to read and write
emails, but many computers are needed in the background to perform these tasks.
Each of these computers offers a certain set of services, and the consumer or user
of these services will in most cases be another computer who is acting on behalf of
a human, either directly or indirectly.

The first layer of services is provided by the frontend server and consumed by
the web browser. The browser makes requests and expects
responses—predominantly using HTTP, but also via WebSockets, SPDY, etc. The
resources which are requested can pertain to emails, contacts, chats, searching and
many more (plus the definition of the styles and layout of the web site). One such
request might be related to the images for people you correspond with: when you
hover over an email address, a pop-up window appears which contains details
about that person, including a photograph or avatar image. In order to render that
image, the web browser will make a request to the frontend server. The name of
that server is not chosen without reason, because its main function is to hide all the
backend services behind a façade so that external clients do not need to concern
themselves with the internal structure of the overall GMail service
implementation and Google is free to change it behind the scenes. The frontend
server will make a request to an internal service for retrieving that person’s image;
the frontend server is thus a user of the internal service. The internal image service
itself will probably contain all the logic for managing and accessing the images,
but it will not contain the bits and bytes of the images itself, those will be stored on
some distributed file system or other storage system. In order to fulfil the request,
the image service will therefore employ the services of that storage system.

In the end, the user action of hovering the mouse pointer over an email address
sets in motion a flurry of requests via the web browser, the frontend server, the
internal image service down to the storage system, followed by their respective
responses traveling in the opposite direction until the image is properly rendered
on the screen. Along this chain we have seen multiple user–service relationships,
and all of them need to meet the basic challenges as outlined in the introduction;
most important is the requirement to respond quickly to each request. When
describing reactive systems, we mean all of these relationships:

a which consumes a user service
©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.

These will be cleaned up during production of the book by copyeditors and proofreaders.
http://www.manning-sandbox.com/forum.jspa?forumID=909

4

http://www.manning-sandbox.com/forum.jspa?forumID=909

a which makes a request to a client server
a which contacts a consumer provider
and so on

A system will comprise many parts that act as services, as shown above, and
most of these will in turn be users of other services. The important point to note is
that today’s systems are distributed at an increasingly fine-grained level,
introducing this internal structure in more and more places. When designing the
overall implementation of a feature like the image service, you will need to think
about services and their users’ requirements not only on the outside but also on the
inside. This is the first part of what it means to build reactive applications. Once
the system has been decomposed in this way, we need to turn our focus to making
these services as responsive as they need to be to satisfy their users at all levels.
Along the way we will see that lowering the granularity of our services allows us
to better control, compose and evolve them.

The first and foremost quality of a service is that it must respond to requests it
receives. This is quite obvious once you think about it: when you send an email via
GMail, you want confirmation that it has been sent; when you select the label for
important email then you want to see all important emails; when you delete an
email you want to see it vanish from the displayed list. All of these are
manifestations of the service’s responses, rendered by the web browser to visualize
them.

The same holds true in those cases where the user is not a human, because the
services which consume other services expect responses as well in order to be able
to continue to perform their function. And the users of these services also expect
them to respond in a timely fashion in turn.

The simplest case of a user–service relationship is invoking a method or function:

The user provides the argument “42” and hands over control of the CPU to the
function “f“, which might calculate the 42nd Fibonacci number or the faculty of
42. Whatever the function does, we expect it to return some result value when it is
finished. This means that invoking the function is the same as making a request,

1.2 Reacting to Users

1.2.1 Responsiveness in a Synchronous System

val result = f(42)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

5

http://www.manning-sandbox.com/forum.jspa?forumID=909

and the function returning a value is analogous to replying with a response. What
makes this example so simple is that most programming languages include syntax
like the one above which allows direct usage of the response under the assumption
that the function does indeed reply. If that were not to happen, the rest of the
program would not be executed at all, because it cannot continue without the
response. The underlying execution model is that the evaluation of the function
occurs synchronously, on the same thread, and this ties the caller and the callee
together so tightly that failures affect both in the same way.

As soon as a computation needs to be distributed among multiple processor
cores or networked computers, this tightly-knit package falls apart. Waldo et al

note that the assumptions woven into local, synchronous method calls are broken4

in several ways as soon as network communication is involved. The main problems
are:

Footnote 4 m Jim Waldo, Geoff Wyant, Ann Wollrath, Sam Kendall: A Note on Distributed Computing,
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.7628

vastly different latency between local and remote calls
different memory visibility for local and remote calls
the possibility for partial failure during remote calls
inherent concurrency when performing remote calls

The Waldo article was written in 1994, when there was a clear hierarchy of
latencies and bandwidths between local memory access, persistent storage and
network communication. Within the last twenty years these lines have become
blurred due to extremely fast network equipment on the one hand and rather costly
inter-socket communications (between cores which are part of different processors
in the same computer) on the other hand; instead of being separated by three or
more orders of magnitude (sub-microsecond versus milliseconds) they have come
within a factor ten of each other. We need to treat the invocation of services that
are remote in the same manner as those running on the same machine but within
different threads or processes, as most or all of the characteristic differences given
above apply to them as well. The classical “local” way of formulating our systems
is being replaced by designs which are distributed on ever more fine-grained
levels.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

6

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.7628
http://www.manning-sandbox.com/forum.jspa?forumID=909

The most costly problem with distributed systems is their capability of partial
, which means that in addition to a failure within the target service we needfailure

to consider the possibility that either the request or the response might be lost; this
may occur randomly, making the observed behavior seem inconsistent over time.
In a computer network this is easy to see, just unplug a network cable and the
packets transporting these messages will not be delivered. In the case of an
internally distributed system you will have to employ different utilities for
transporting requests and responses between different CPU cores or threads. One
way to do this is to use queues which are filled by one thread and emptied by

another ; if the former is faster than the latter then eventually the queue will run5

full (or the system will run out of memory), leading to message loss just as in a
networked system. An alternative would be synchronous handover from one thread
to another, where either is blocked from further progress until the other is ready as
well. Such schemes also include faults which amount to partial failure due to the
concurrent nature of execution—simply spoken the caller will not see the
exception of the callee anymore since they do not run on the same thread.

Footnote 5 m An example of such an architecture is the Staged event-driven architecture (SEDA),
http://www.eecs.harvard.edu/~mdw/proj/seda/, about which an interesting retrospective is available at
http://matt-welsh.blogspot.com/2010/07/retrospective-on-seda.html.

In a distributed system responsiveness therefore is not only a tunable property
which is nice to have, it is a crucial requirement. The only way to detect that a
request may not have been processed is to wait for the response so long that under
normal circumstances it should have arrived already. But this requires that the

maximum time between request and response—the maximum response latency6

—is known to the user, and that the latency of the service is consistent enough for
this purpose.

Footnote 6 m Latency describes the time that passes between a stimulus and a reaction: when a physician
knocks the rubber hammer against that particular spot below the knee your lower leg will jerk forward, and the time

 between when the hammer hits and when the leg starts moving is the latency. When you send an HTTP
request, the response latency (at the application level) is the time between when you invoke the method that sends
the request and when the response is available to you; this is greater than the processing latency at the server, which
is measured between when the request is received and when the response is being sent.

For example consider the GMail app’s contact image service: if it normally
takes 50 milliseconds to return the bits and bytes, but in some cases it might take
up to 5 seconds, then the wait time required by users of this service would need to

1.2.2 Why is responsiveness now more important than ever?

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

7

http://www.eecs.harvard.edu/~mdw/proj/seda/
http://matt-welsh.blogspot.com/2010/07/retrospective-on-seda.html
http://www.manning-sandbox.com/forum.jspa?forumID=909

be derived from the 5 seconds, and not from the 50 milliseconds (usually adding
some padding to account for variable network and process scheduling latencies).
The difference between these two is that in one case the frontend could reply with
a 503 “Service temporarily unavailable” error code for example after 100
milliseconds while in the other it would have to wait and keep the connection open
for many seconds. In the first case the human user could see the generic
replacement image with a delay that is barely noticeable while in the second case
even a patient user will begin wondering if their internet connection is broken.

The distinguishing factor between the two scenarios is the vastly different limit
defining the maximum reasonable wait time for a response. In order to obtain a
reactive system we want this time to be as short as possible in order to live up to
the expectation that responses are returned “quickly”. A more scientific
formulation for this is that a service needs to establish an upper bound on its
response latency which allows users to cap their wait times accordingly.

Important: In order to recognize when a request has failed we need bounded
latency, which means formulating a dependable budget for which latency is
allowed. Having a soft limit based on a latency which is “usually low enough”
does not help in this regard. Therefore the relevant quantity is not the average or
median latency, since the latter for example would mean that in 50% of the cases
the service will still respond after the budget elapses, rejecting half of the valid
replies due to timeout. When characterizing latencies we might look at the 99th
percentile (i.e. the latency bound which allows 99% of the replies through and only
rejects 1% of valid replies) or depending on the requirements for the service even
on the 999th 1000-quantile—or even the 9999th 10000-quantile.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

8

http://www.manning-sandbox.com/forum.jspa?forumID=909

Figure 1.2 A task consisting of three sub-tasks that are executed sequentially: the total
response latency is given by the sum of the three individual latencies.

1.2.3 Cutting Down Latency by Parallelization

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

9

http://www.manning-sandbox.com/forum.jspa?forumID=909

Figure 1.3 A task consisting of three sub-tasks that are executed in parallel: the total
response latency is given by the maximum of the three individual latencies.

In many cases there is one possibility for latency reduction which immediately
presents itself. If for the completion of a request several other services must be
involved, then the overall result will be obtained quicker if the other services can
perform their functions in parallel as shown in figure 1.3 above. This requires that
no dependency exists such that for example task B needs the output of task A as
one of its inputs, but that is frequently the case. Take as an example the GMail app
in its entirety, which is composed of many different but independent parts. Or the
contact information pop-up window for a given email address contains textual
information about that person as well as their image, and these can clearly be
obtained in parallel.

When performing sub-tasks A, B and C sequentially as shown in figure 1.2 the
overall latency will depend on the sum of the three individual latencies, while in
the parallel case this part will be replaced with the latency of whichever of the
sub-tasks takes longest. In this example we have just three sub-tasks, but in real
social networks this number can easily exceed 100, rendering sequential execution
entirely impractical.

Sequential execution of functions is well-supported by all popular programming
languages out of the box:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

10

http://www.manning-sandbox.com/forum.jspa?forumID=909

Parallel execution usually needs some extra thought and library support. For
one, the service being called must not return the response directly from the method
call which initiated the request, because in that case the caller would be unable to
do anything while task A is running, including sending a request to perform task B
in the meantime. The way to get around this restriction is to return a of theFuture
result instead of the value itself:

This and other tools of the trade are discussed in detail in chapter two, here it
suffices to know that a Future is a placeholder for a value which may eventually
become available, and when it does the value can be accessed via the Future
object. If the methods invoking sub-tasks A, B and C are changed in this fashion
then the overall task just needs to call them to get back one Future each.

The code above uses a type called defined in the Java standard libraryFuture

(in package java.util.concurrent), and the only method it defines for accessing the
value is the blocking method. Blocking here means that the calling threadget()

is suspended and cannot do anything else until the value has become available. We
can picture the use of this kind of Future like so (written from the perspective of
the thread handling the overall task):

When I get the task to assemble the overview file of a certain client, I will
dispatch three runners: one to the client archives to fetch address, photograph and
contract status, one to the library to fetch all articles the client has written and one
to the postal office to collect all new messages for this client. This is a vast
improvement over having to perform these tasks myself, but now I need to wait
idly at my desk until the runners return, so that I can collate everything they bring
into an envelope and hand that back to my boss.

// Java syntax
ReplyA a = taskA();
ReplyB b = taskB();
ReplyC c = taskC();
Result r = aggregate(a, b, c);

// Java syntax
Future<ReplyA> a = taskA();
Future<ReplyB> b = taskB();
Future<ReplyC> c = taskC();
Result r = aggregate(a.get(), b.get(), c.get());

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

11

http://www.manning-sandbox.com/forum.jspa?forumID=909

It would be much nicer if I could leave a note for the runners to place their
findings in the envelope and the last one to come back dispatches another runner to
hand it to my boss without involving me. That way I could handle many more
requests and would not feel useless most of the time.

What the thread processing the request should do is to just describe how the
values shall be composed to form the final result instead of waiting idly. This is
possible with , which are part of many other programmingcomposable Futures
languages or libraries, including newer versions of Java (CompletableFuture

 is introduced in JDK 8). What this achieves is that the architecture turns
completely from synchronous and blocking to asynchronous and non-blocking,
where the underlying machinery needs to become in order to supportevent-driven

this. The example from above would transform into the following :7

Footnote 7 m This would also be possible with Java 8 using the combinator,CompletionStage andThen

but due to the lack of for-comprehensions the code would grow in size relative to the synchronous version. The
Scala expression on the last line transforms to corresponding calls to , which are equivalent to flatMap

’s .CompletionStage andThen

Initiating a sub-task as well as its completion are just events which are raised by
one part of the program and reacted to in another part, for example by registering
an action to be taken when a Future is completed with its value. In this fashion the
latency of the method call for the overall task does not even include the latencies
for sub-tasks A, B and C. The system is free to handle other requests while those
are being processed, reacting eventually to their completion and sending the overall
response back to the original user.

Now you might be wondering why this second part of asynchronous result
composition is necessary, would it not be enough to reduce response latency by
exploiting parallel execution? The context of this discussion is achieving bounded
latency in a system of nested user–service relationships, where each layer is a user
of the service beneath it. Since parallel execution of the sub-tasks A, B and C
depended on their initiating methods to return Futures instead of strict results, this

// using Scala syntax
val fa: Future[ReplyA] = taskA()
val fb: Future[ReplyB] = taskB()
val fc: Future[ReplyC] = taskC()
val fr: Future[Result] = for (a <- fa; b <- fb; c <- fc)
 yield aggregate(a, b, c)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

12

http://www.manning-sandbox.com/forum.jspa?forumID=909

must also apply to the overall task itself. It very likely is part of a service that is
consumed by a user at a higher level, and the same reasoning applies on that higher
level as well.

For this reason it is imperative that parallel execution is paired with
asynchronous and event-driven result aggregation. An added benefit is that
additional events like task timeouts can be added without much hassle, since the
whole infrastructure is already there: it is entirely reasonable to perform task A and
couple the resulting future with one which holds a afterTimeoutException

100 milliseconds and use that in the following. Then either of the two
events—completion of A or the timeout—triggers those actions which were
attached to the completion of the combined future.

Parallelization can only reduce the latency to match that of the slowest code path
through your service method: if you can perform A, B and C in parallel and then
you need to wait for all three results before you can initiate D, E, F and G in order
to be able to assemble the final result, then the latency of this whole process will be
the sum of

the maximum latency of A, B and C
the maximum latency of D, E, F and G
plus what the aggregation logic itself consumes
plus some overhead for getting the asynchronous actions to run

Apart from the last point, every contribution to this sum can be optimized
individually in order to reduce the overall latency. The question is only what
precisely we should be optimizing for: when given a problem like sorting a list we
can pick an algorithm from a library of good alternatives, instinctively reaching for
that one which has its sweet spot close to where the input data are distributed. This
usual optimization goal is not focused on latency but on performance, we consider
the average throughput of the component instead of asking which of the choices
provides the best “worst case” latency.

This difference does not sound important, since higher average throughput
implies lower average latency. The problem with this viewpoint is that in the case
of latency the average is almost irrelevant: as we have seen in the example with the
GMail app above we need to cap the wait time in case something goes wrong,
which requires that the nominal latency is strictly bounded to some value, and the
service will be considered failed if it takes longer than the allotted time.

1.2.4 Choosing the Right Algorithms for Consistent Latency

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

13

http://www.manning-sandbox.com/forum.jspa?forumID=909

Considering the service to be failing when it is actually working normally should
ideally not ever happen: we want failure detection to be as reliable as possible
because otherwise we will be wasting resources. Given the following data, where
would you position the cut-off?

In 10% of all cases the response arrives in less than 10ms.
In 50% of all cases the response arrives in less than 20ms.
In 90% of all cases the response arrives in less than 25ms.
In 99% of all cases the response arrives in less than 50ms.
In 99.9% of all cases the response arrives in less than 120ms.
In 99.99% of all cases the response arrives in less than 470ms.
In 99.999% of all cases the response arrives in less than 1340ms.
The largest latency ever observed was 3 minutes and 16 seconds.

Clearly it is not a good idea to wait 3 minutes and 16 seconds hoping that this
will never accuse the service wrongly of failure, because this measurement was
just largest observed one and there is no guarantee that longer times are impossible.
On the other hand cutting at 50ms sounds nice (it is an attractively low number!),
but that would mean that statistically 1 in 100 requests will fail even though the
service was actually working. When you call a method, how often do you think it
should fail without anything actually going wrong? This is clearly a misleading
question, but it serves to highlight that choosing the right latency bound will
always be a trade-off between responsiveness and reliability.

There is something we can do to make that trade-off less problematic. If the
implementation of the service is chosen such that it does not focus on “best case”
performance but instead achieves a latency distribution which is largely
independent of the input data, then the latency bounds corresponding to the
different percentiles will be rather close to each other, meaning that it does not cost
much time to increase reliability from 99.9% to 99.99%.

Keeping the response latency independent from the request details is an
important aspect of choosing the right algorithm, but there is another characteristic
which is equally important and which can be harder to appreciate and take into
account. If the service keeps track of the different users making requests to it or
stores a number of items which grows with more intense usage, then chances are
that the processing of each single request takes longer the more state the service
has acquired. This sounds natural—the service might have to extract the response
from an ever growing pile of data—but it also places a limit at how intensely the
service can be used before it starts violating its latency bound too frequently to be

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

14

http://www.manning-sandbox.com/forum.jspa?forumID=909

useful. We will consider this limitation in detail when discussing scalability later in
this chapter, here it suffices to say that when faced with a choice of different
algorithms you should not trade performance in the case of heavy service use for
achieving lower latency in the case of a lightly used service.

No amount of planning and optimization will guarantee that the services you
implement or depend on do abide by their latency bounds. We will talk more about
the nature of which things can go wrong when discussing resilience, but even
without knowing the source of the failure there are some useful techniques for
dealing with services which violate their bounds.

When a service receives requests faster than it can handle them—when the
incoming request rate exceeds the service’s capacity—then these requests will have
to queue up somewhere. There are many places in which queueing occurs without
being visible at the surface, for example in the TCP buffers of the operating system
kernel or in the currently suspended threads which await their next time slot for
execution on a CPU core. In addition, an event-driven system usually has a
mechanism which enqueues events for later processing, because if it did
not—meaning that it executes all actions on the spot—it will run out of stack space

for deeply nested action handlers . All these queues have the purpose of8

transporting information from one execution context to another, and all of them
have the side-effect of delaying that transfer for a period of time which is
proportional to the current queue size.

Footnote 8 m This would lead for example to a StackOverflowError on the JVM or segmentation violations in
native code.

Another way of expressing this is that queueing requests up in front of a service
has the effect of incurring additional latency for each of the requests. We can
estimate this time by dividing the size of the queue which has built up by the
average rate at which requests can be taken in. As an example consider a service
which can process 1000 requests per second and which receives 1100 requests per
second for some time. After the first second, 100 requests will have queued up,
leading to an extra 100/(1000/s)=0.1s of latency. One second later the additional
latency will be 0.2s and so on, and this number will keep rising unless the
incoming onslaught of requests slows down.

When planning the service this extra delay must be taken into account, because

1.2.5 Bounding Latency even when Things go Wrong

WITHIN THE SERVICE: USE BOUNDED QUEUES

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

15

http://www.manning-sandbox.com/forum.jspa?forumID=909

otherwise the latency bound will be violated exactly at the wrong time—when your
service is used by more users, presumably because you were just about to be
successful. The difficulty with taking this into account lies in the dynamic nature
of the queue: how can we estimate the maximum reasonable size to factor into the
calculation?

There is only one way to do this reliably, and that is to reduce the dynamic part
of the equation as far as possible by minimizing the implicit queues and replacing
them with explicit, deliberately placed queues within your control. For example the
kernel’s TCP buffers should be rather small and the network part of the application
should focus on getting the requests from the network into the application’s queue
as fast as possible. Then the size of that queue can be tuned to meet the latency
requirements by setting it such that it holds only as many elements as extra latency
was allowed in the timing budget.

When new requests arrive while the buffer is full, then those requests cannot be
serviced within the allotted time in any case, and therefore it is best to send back a
failure notice right away, with minimum delay. Another possibility could be to
route the overflow requests to a variant of the service which gives less accurate or
less detailed answers, allowing quality of service to degrade gracefully and in a
controlled fashion instead of violating the latency bound or failing completely.

When users are momentarily overwhelming a service, then its response latency will
rise and eventually it will start failing. The users will receive their responses with
more delay, which in turn increases their own latency until they get close to their
own limits. In order to stop this effect from propagating across the whole chain of
user–service relationships, the users need to shield themselves from the
overwhelmed service during such time periods. The way to do this is well known
in electrical engineering: install a circuit breaker as shown in figure 1.4.

USERS OF THE SERVICE: USE CIRCUIT BREAKERS

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

16

http://www.manning-sandbox.com/forum.jspa?forumID=909

Figure 1.4 A circuit breaker in electrical engineering protects a circuit from being
destroyed by a too high current. The software equivalent does the same thing for a
service which would otherwise be overwhelmed by too many requests.

The idea here is quite simple: when involving another service, monitor the time
it takes until the response comes back. If the time consistently rises above the
allowed threshold which this user has factored into its own latency budget for this
particular service call, then the circuit breaker trips and from then on requests will
take a different route of processing which either fails fast or gives degraded service
just as in the case of overflowing the bounded queue in front of the service. The
same should also happen if the service replies with failures repeatedly, because
then it is not worth the effort to send requests at all.

This does not only benefit the user by insulating it from the faulty service, it
also has the effect of reducing the load on the struggling service, giving it some
time to recover and empty its queues. It would also be a possibility to monitor such
occurrences and reinforce the resources for the overwhelmed service in response to
the increased load, as we shall discuss below when we talk about scalability.

When the service has had some time to recuperate, the circuit breaker should
snap back into a half-closed state in which some requests are sent in order to try
out whether the service is back in shape. If not, then it can trip immediately again,
otherwise it closes automatically and resumes normal operations.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

17

http://www.manning-sandbox.com/forum.jspa?forumID=909

The top priority of a service is that it responds to requests in a timely fashion,
which means that the service implementation must be designed to respect a certain
maximum response time—its latency must be bounded. Tools available for
achieving this are

making good use of opportunities for parallelization
focusing on consistent latency when choosing algorithms
employing explicit and bounded queuing within the service
shielding users from overwhelmed services using circuit breakers

In the last section we concerned ourselves with designing a service implementation
such that every request is met with a response within a given time. This is
important because otherwise the user cannot determine whether the request has
been received and processed or not. But even with flawless execution of this design
unexpected things will happen eventually:

Software will fail.
There will always be that exception which you forgot to handle (or which was not even
documented by the library you are using), or you get synchronization only a tiny bit
wrong and a deadlock occurs, or that condition you formulated for breaking that loop just
does not cope with that weird edge case. You can always trust the users of your code to
figure out ways to find all these failure conditions and more.
Hardware will fail.
Everyone who has operated computing hardware knows that power supplies are
notoriously unreliable, or that harddisks tend to turn into expensive door stops either
during the initial burn-in phase or after a few years later, or that dying fans lead to silent
death of all kinds of components by overheating them. In any case, your invaluable
production server will according to Murphy’s law fail exactly when you most need it.
Humans will fail.
When tasking maintenance personnel with replacing that failed harddisk in the RAID5, a
study finds that there is a 10% chance to replace the wrong one, leading to the loss of all9

data. An anecdote from Roland’s days as network administrator is that cleaning personnel
unplugged the power of the main server for the workgroup—both redundant cords at the
same time—in order to connect the vacuum cleaner. None of these should happen, but it
is human nature that we just have a bad day from time to time.

Footnote 9 m Aaron B. Brown, IBM Research, Oops! Coping with Human Error in IT Systems,
http://queue.acm.org/detail.cfm?id=1036497

The question is therefore not a failure occurs but only or .if when how often

1.2.6 Summarizing the Why and How of Responsiveness

1.3 Reacting to Failure

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

18

http://queue.acm.org/detail.cfm?id=1036497
http://www.manning-sandbox.com/forum.jspa?forumID=909

The user of a service does not care how an internal failure happened or what
exactly went wrong, because the only response it will get is that no normal
response is received. It might be that connections time out or are rejected, or that
the response consists of an opaque internal error code. In any case the user will
have to carry on without the response, which for humans probably means using a
different service: if you try to book a flight and the booking site stops responding
then you will take your business elsewhere and probably not come back anytime
soon.

A service of high quality is one that performs its function very reliably,
preferably without any downtime at all. Since failure of computer systems is not an
abstract possibility but in fact certain, the question arises how we can hope to
construct a reliable service. The Reactive Manifesto chooses the term resilience
 instead of reliability precisely to capture this apparent contradiction.

NOTE What does Resilience mean?
Merriam-Webster defines resilience as:

the ability of a substance or object to spring back into shape

the capacity to recover quickly from difficulties

The key notion here is to aim at fault tolerance instead of fault avoidance
because we know that the latter will not be fully successful. It is of course good to
plan for as many failure scenarios as we can, to tailor programmatic responses such
that normal operations can be resumed as quickly as possible—ideally without the
user noticing anything. But the same must also apply to those failure cases which
were not foreseen explicitly in the design, knowing that these will happen as well.

There is only one generic way to protect your system from failing as a whole
when a part fails: and . The former can informally bedistribute compartmentalize
translated as “don’t put all eggs in one basket”, while the latter adds “protect your
baskets from one another”. When it comes to handling the failure, it is important to

, so that not the failed compartment itself is responsible for its owndelegate
recovery.

Distribution can take several forms, the one you think of first is probably that
an important database is replicated across several servers such that in the event of a
hardware failure the data are safe because copies are readily available. If you are
really concerned about those data then you might go as far as placing the replicas

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

19

http://www.manning-sandbox.com/forum.jspa?forumID=909

in different buildings in order not to lose all of them in case of a fire—or to keep
them independently operable when one of them suffers a complete power outage.
For the really paranoid, those buildings would need to be supplied by different
power grids, better even in different countries or on separate continents.

The further apart the replicas are kept the smaller is the probability of a single fault
affecting all of them. This can also be applied to the human component of the
design, where operating parts of the system by different teams minimizes chances
that the same mistake is made everywhere at once. The idea behind this is to
isolate the distributed parts, or to use a metaphor from ship building we want to use

.bulkheading

Figure 1.5 The term “bulkheading” comes from ship building and means that the vessel is
segmented into fully isolated compartments.

Figure 1.5 shows the schematic design of a large cargo ship whose hold is
separated by bulkheads into many compartments. When the hull is breached for
some reason, then only those compartments which are directly affected will fill up
with water and the others will remain properly sealed, keeping the ship afloat.

One of the first examples of this building principle was the , whichTitanic
featured 15 bulkheads between bow and stern and was therefore considered

unsinkable . We all know that that particular ship did in fact sink, so what went10

wrong? In order not to inconvenience passengers (in particular in the higher
classes) and to save money the bulkheads extended only a few feet above the water
line and the compartments were not sealable at the top. When five compartments
near the bow were breached during the collision with the iceberg the bow dipped
deeper into the water, allowing the water to flow over the top of the bulkheads into
more and more compartments until the ship sank.

Footnote 10 m "There is no danger that Titanic will sink. The boat is unsinkable and nothing but inconvenience
will be suffered by the passengers." — Phillip Franklin, White Star Line vice-president, 1912

This example—while certainly one of the most terrible incidents in marine
history—perfectly demonstrates that bulkheading can be done wrong in such a way

1.3.1 Compartmentalization and Bulkheading

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

20

http://www.manning-sandbox.com/forum.jspa?forumID=909

that it becomes useless. If the compartments are not actually isolated from each
other, failure can cascade between them to bring the whole system down. One such
example from distributed computing designs is managing fault-tolerance at the
level of whole application servers, where one failure can lead to the failure of other
servers by overloading or stalling them.

Modern ships employ full compartmentalization where the bulkheads extend
from keel to deck and can be sealed on all sides including the top. This does not
make them unsinkable, but in order to obtain the catastrophic outcome the ship
needs to be mismanaged severely and run with full speed against a rock. That
metaphor translates in full to computer systems.

Executing different replicas of a service or entirely different services in a
distributed fashion means that requests will have to be sent to remote computers
and responses will have to travel back. This could be done by making a TCP
connection and sending the request and response in serialized form, or it could use
some other network protocol. The main effect of such distribution is that the
processing of a request happens asynchronously, outside of the control of the user.

As we have seen when discussing the parallelization of tasks, asynchronous
execution is best coupled with event-driven reply handling, since we will otherwise
have one thread idly twiddling its thumbs while waiting for the response to come
back. This is even more important when a network is involved, since the latency
will in general be higher and the possibility of message loss needs to be taken into
account, thus the effect of (partial) failure on the calling party in terms of wasted

resources will be larger .11

Footnote 11 m This is even more relevant if for example a new TCP connection needs to be established, which
adds overhead for the three-way handshake and in addition throttles the utilized bandwidth initially due to its
slow-start feature.

For this reason distribution naturally leads to a fully asynchronous and
event-driven design. This conclusion also follows from the principle of
compartmentalization, since sending the request synchronously and processing it
within the same method call holds the user’s thread hostage, unable to react to
further events during this time. Avoiding this means that processing must happen
asynchronously and the response will be a future event which needs to be handled
when it occurs; if the user blocked out all other inputs while waiting for the
response then this scheme would not be an improvement over synchronous
processing:

1.3.2 Consequences of Distribution

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

21

http://www.manning-sandbox.com/forum.jspa?forumID=909

In this example the processing of the request happens asynchronously—perhaps
on another computer—and the calling context can in principle go on to perform
other tasks. But it chooses to just wait for the result of processing the requests,
putting its own liveness into the hands of the other service in hope that it will reply
quickly. Full isolation means that no compartment can have such power over
another.

The design we have constructed at this point consists of services which make use
of other services in a way that completely isolates them from each other
concerning failures in order to avoid those failures from cascading across the
whole system. But as we have argued failure will eventually happen, so the
question becomes where it should go. In traditional systems composed using
synchronous method calls the mechanism for signaling and handling failure is
provided by exceptions: the failing service throws an exception and the user
catches and handles it. This is impossible in our isolated design since everything
will need to be asynchronous, processing will happen outside of the call stack of
the user and therefore exceptions cannot reach it.

At this point, let’s step back from designing computer systems and think about an
entirely mundane situation: you need a cup of coffee and therefore make your way
to the vending machine. While walking over you begin sorting through the coins in
your pocket, so that you can immediately put the appropriate ones into the coin slot
when you arrive. Thereafter you will press the right button and wait for the
machine to do the rest. There are several possible outcomes to this operation:

Everything went just fine and you can enjoy your steaming hot coffee.
You mixed up the coins while day-dreaming and the machine points that out to you.
The machine has run out of coffee and spews the coins back out.

All of these are perfectly reasonable exchanges between you and the machine,
each giving a response paired with your request. The frustratingly negative
outcomes listed above are not failures, they are nominal conditions signaled

// Java syntax
Future<Reply> futureReply = makeRequest();
Reply reply = futureReply.get();

1.3.3 Delegating Failure Handling

THE VENDING MACHINE

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

22

http://www.manning-sandbox.com/forum.jspa?forumID=909

appropriately by the machine; we would call those validation errors returned from
the service.

Failures on the other hand are characterized by the inability of the machine to
give you a response. Among the possible scenarios are:

The logic board in the machine is broken.
Some jerk stuck chewing gum into the coin slot so that the coins do not reach the
counting mechanism.
The machine is not powered.

In these cases there will not be a response. Instead of waiting indefinitely in
front of it you will quickly realize that something is wrong, but what do you do?
Do you fetch screwdriver and soldering iron and start fixing the machine? In all but
the most special cases this is not what is going to happen, since you will simply
walk away, hoping to get your shot of caffein in some other way. Maybe you
inform someone of the failure, but in most cases you will just assume that those
who operate the vending machine will eventually fix it—they will not earn any
money with it while it is broken in any case.

The crucial observation in the example of the vending machine is that
responses—including validation errors—are communicated back to the user of a
service while failures must be handled by the one who operates the service. The
term which describes this relationship in a computer system is that of a .supervisor
The supervisor is responsible for keeping the service alive and running.

SUPERVISION

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

23

http://www.manning-sandbox.com/forum.jspa?forumID=909

Figure 1.6 Supervision means that normal requests and responses (including negative
ones such as validation errors) flow separately from failures: while the former are
exchanged between the user and the service, the latter travel from the service to its
supervisor.

Figure 1.6 depicts these two different flows of information. The service
internally handles everything which it knows how to, it performs validation and
processes requests, but any exceptions which it cannot handle are escalated to the
supervisor. While the service is in a broken state it cannot process incoming
requests, imagine for example a service which depends on a working database
connection. When the connection breaks, the database driver will throw an
exception. If we tried to handle this case directly within the service by attempting
to establish a new connection, then that logic would be mixed with all the normal
business logic of this service. But worse is that this service would need to think
about the big picture as well. How many reconnection attempts make sense? How
long should it wait between attempts?

Handing those decisions off to a dedicated supervisor allows separation of
concerns—business logic versus specialized fault handling—and factoring them
out into an external entity also enables the implementation of an overarching
strategy for several supervised services. The supervisor could for example monitor

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

24

http://www.manning-sandbox.com/forum.jspa?forumID=909

how frequently failures occur on the primary database backend system and fail
over to a secondary database replica when appropriate. In order to do that the
supervisor must have the power to start, restart and stop the services it supervises,
it is responsible for their lifecycle.

The first system which directly supported this concept was Erlang/OTP,
implementing the Actor model which is discussed in chapter two. Patterns related
to supervision are described in chapter five.

The user of a service expects responsiveness at all times and typically has not
much tolerance for outages due to internal failure. The only way to make a service
resilient to failure is to distribute and compartmentalize it:

Install water-tight bulkheads between compartments to isolate failure.
Delegate handling of failure to a supervisor instead of burdening the user.

Let us assume that you built a service which is responsive and resilient and you
offer this service to the general public. If the function that the service performs is
also useful and possibly en vogue then eventually the masses will find out about it.
Some of the early adopters will write blog posts and status updates in social
networks and some day such an article will end up on a large news media site and
thousands of people suddenly want to know what all the noise is about. In order to
save cost—you have invested your last penny into the venture but still need to buy
food occasionally—you run the site using some infrastructure provider and pay for
a few virtual CPUs and a little memory. The deployment will not withstand the
onslaught of users and your latency bounds kick in, resulting in a few hundred

happy customers and a few thousand unimpressed rubbernecks who will not12

even remember the product name you carefully made up—or worse they badmouth
your service as unreliable.

Footnote 12 m This is an interesting but in this case not really consoling win of properly designing a
responsive system; with a traditional approach everyone would have just seen the service crash and burn.

This sad story has happened many times on the internet to date, but it lies in the
nature of this kind of failure that it is usually not noticed. A very famous example
of a service which nearly shared this fate is Twitter. The initial implementation was
simply not able to keep up with the tremendous growth that the service
experienced in 2008, and the solution was to rewrite the whole service over the

1.3.4 Summarizing the Why and How of Resilience

1.4 Reacting to Load

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

25

http://www.manning-sandbox.com/forum.jspa?forumID=909

period of several years to make it fully reactive. Twitter had at that point already
enough resources to turn impending failure into great success, but most tiny
start-ups do not.

How can you avoid this problem? How can we design and implement a service
such that it becomes resilient to overload? The answer is that the service needs to
be built from the ground up to be scalable. We have seen that distribution is
necessary in order to achieve resilience, but it is clear that there is a second
component to it: a single computer will always have a certain maximum number of
requests that it can handle per second and the only way to increase capacity beyond
this point is to distribute the service across multiple computers.

The mechanics necessary for distribution are very similar to those we discussed
for parallelization already. The most important prerequisite for parallelization was
that the overall computation can be split up into independent tasks such that their
execution can happen asynchronously while the main flow goes on to do
something else. In the case of distribution of a service in order to utilize more
resources we need to be able to split up incoming stream of work items (the
requests) into multiple streams that are processed by different machines in parallel.

As an example consider a service which calculates mortgage conditions: when
you go to a bank and ask for a loan then you will have to answer a number of
questions and your answers determine how much you would have to pay per month
and how much you still owe the bank after say 5 years. When the bank clerk
presses the calculate button in the internal mortgage web application, a request is
made to the calculation service which bundles all your answers. Since many people
want to inquire about loans all the time all over the country, the bank will have an
instance of this service running at headquarters which day in and day out crunches
the numbers on all these loans. But since there is no relationship between any two
such requests, the service is free to process them in any order or as many in parallel
as it wants, the incoming work stream consists of completely independent items
and is therefore splittable down to each single request.

Now consider the service within the same bank which handles the actual loan
contracts. It receives very similar data with its requests, but the purpose is not an
ephemeral calculation result. This service must take care to store the contract
details for later reference, and it must also give reliable answers as to which loans a
certain person already has taken. The work items for this service can be correlated

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

26

http://www.manning-sandbox.com/forum.jspa?forumID=909

with each other if they pertain to the same person, which in turn means that the
incoming request stream cannot be split up arbitrarily—it can still split up though
and we will discuss techniques for that in chapter seven.

The second component to making a service scalable builds on top of splittable
stream of work in that the performance of the service is monitored and the
distribution across multiple service instances is steered in response to the measured
load. When more requests arrive and the system reaches its capacity then more
instances are started to relieve the others; when the number of requests decreases
again instances are shut down to save cost. There is of course an upper limit to how
far you can allow the system to scale, and when you hit that ceiling then there is no
choice but to let the responsiveness measures kick in and reject requests—given
today’s cloud service providers this limitation can be pushed out quite far, though.

There is one very useful and equally intuitive formula relating the average number
of requests which are concurrently being serviced, the rate at which requestsL
arrive and the average time a request stays in the service while being processed:W

L=•W
This is known as and it is valid for the long-term averages of theLittle’s Law

three quantities independent of the actual timing with which requests arrive or the
order in which they are processed. As an example consider the case that servicing
one request takes 10ms and only one request arrives per second on average. Little’s
Law tells us that the average number of concurrent requests will be 0.01, which
means that when planning the deployment of that service we do not have to foresee
multiple parallel tracks of execution. If we want to use that service more heavily
and send it 1000 requests per second then the average number of concurrent
requests will be 10, meaning that we need to foresee the capability to process ten
requests in parallel if we want to keep up with the load on average.

We can use this law when planning the deployment of a service. To this end we
must measure the time it takes to process one request and we must make an
educated guess about the request frequency—in the case of internal services this
number can potentially be known quite well in advance. The product of these two
numbers then tells us how many service instances will be busy in parallel,
assuming that they run at 100% capacity. Normally there is some variability
expected in both the processing time and the request frequency, wherefore you will
target something between 50–90% of average service utilization in order to plan
for some headroom.

1.4.1 Determining Service Capacity

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

27

http://www.manning-sandbox.com/forum.jspa?forumID=909

What happens during short-term periods where bursts of requests exceed the
planned number has already been discussed under the topic of using bounded
queues for bounded latency: the queues in front of your service will buffer a burst
up to a certain maximum in extra latency and everything beyond that will receive
failure notices.

Little’s Law can also be used in a fully dynamic system at runtime. The initial
deployment planning may have been guided by measurements, but those were
carried out in a testbed with test users. Especially in case of a public service it is
hard to come up with realistic test conditions since people browsing the internet
can at times behave unpredictably. When that happens you will need to measure
again and redo the math to estimate the necessary service capacity. Instead of
waking up the system architect on a Sunday night it would be much preferable if
this kind of intelligence were built into the service itself.

Given an event-driven system design we have everything that is needed in place
already. It does not cost much to keep tabs on how long the processing of each
request takes and feed this information to a monitoring service—the word

 comes to mind. The total inflow of requests can also easily be measuredsupervisor
at the service entry point and regular statistics sent to the supervisor as well. With
these data it is trivial to apply for example an exponentially decaying weighted
average or a moving average and obtain the two input values to Little’s formula.
Taking into account the headroom to be added we arrive at

 = average(requestsPerSecond)
W = average(processingTime)
u = targetUtilization
L = • W / u
Upon every change of the input data this formula is evaluated to yield the

currently estimated resource need in number of service instances, and when L

deviates sufficiently the supervisor changes the number of running instances13

automatically. The only danger in such a system is that the users indirectly control
the resources spent on their behalf, which can mean that your infrastructure bill at
the end of the month will be higher when your service is used a lot. But
presumably that is a very nice problem to have since under this scheme your
service should have won many satisfied customers and earned money accordingly.

Footnote 13 m You will want to avoid reacting on pure fluctuations in order to keep operations smooth.

1.4.2 Building an Elastic Service

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

28

http://www.manning-sandbox.com/forum.jspa?forumID=909

A successful service will need to be scalable both up and down in response to
changes in the rate at which the service is used. Little’s Law can be used to
calculate the required deployment size given measurements for the request rate and
the per-request processing time. In order to make use of it you must consider:

The incoming request stream must be splittable for distribution.
Request processing must be distributable and event-driven.
Change number of active instances based on monitoring data at runtime.

All of the tenets of the Reactive Manifesto which we have considered so far lead to
an event-driven design. We have encountered it when asynchronously aggregating
the results of parallelized sub-tasks, it was implicit in the notion of queueing up
requests in front of a service (and managing that queue to achieve bounded
latency), it is a necessary companion of supervision in that the supervised service
must communicate with users as well as supervisor (which necessitates handling
incoming events as they occur), and we have seen how a service based on
distributable events (requests as well as monitoring data) can dynamically scale up
and down to adapt to changing load. But focusing on events instead of traditional
method calls also has benefits on its own.

We have seen that resilience demands that we distribute a service and form
compartments which are isolated from each other. This isolation at runtime cannot
be achieved if the code paths describing each compartment are entangled with each
other. If that were the case then parts of the code of one compartment would make
assumptions on how exactly the other compartment’s function is implemented and
depend on details which should better be encapsulated and not exposed. The more
independent the implementations are, the smaller is the probability of repeating the
same mistake in several places, which could lead to cascading failures at
runtime—a software failure in one compartment would happen in another as well.

The idea behind modeling encapsulated units which are executed in isolation
and communicate only via their requests and responses is to decouple them not
only at runtime, but also in their design. The effort of analysing and breaking down

1.4.3 Summarizing the Why and How of Scalability

1.5 Reacting to Events

1.5.1 Loose Coupling

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

29

http://www.manning-sandbox.com/forum.jspa?forumID=909

the problem into actionable pieces will then focus purely on the communication
protocols between these units, leading to a very strict separation of interface and
implementation.

TODO: add figure about Alan Kay’s objects.
The original purpose of object orientation as described by Alan Kay was to

fully encapsulate state within the objects and describe their interactions as message
protocols between them. If you look at Java EE objects from this angle, you can
imagine that every method call you make is sending a message to the object, and
the object responds with the result. But something is not quite right with this
picture: sending a message and awaiting a reply are done by the user while
processing the message and generating the reply should be done by the service.
With Java objects every caller can force the object to process the request right
there, independent of the state the object might be in. This makes it very
convenient to burden the object with more and more methods—like getters and
setters—which would normally not be considered if the object had the right to
respond to requests in its own time, when it is appropriate. In other words normal

Java objects do not exhibit the kind of encapsulation that Alan Kay talked about .14

Footnote 14 m It can well be argued that Java is not so much an object oriented language as it is a class
oriented one: it focuses primarily on the inheritance relationships between types of objects instead of on the objects
themselves.

If you take a step back and think about objects as if they were persons, each
with their right to privacy, then it becomes very obvious how they should interact.
Persons talk with each other, they exchange messages at a very high level. Calling
setters on an object corresponds to micromanagement at the lowest possible level,
it is as if you told another person when to breathe (including the consequences in
case you forget to do so). Instead, we talk about what we will do the next day,
week or year, and the realization of these messages will comprise a huge number
of steps which each person executes autonomously. What we gain by this is
encapsulation and we reduce the communication protocol to the minimum while
still achieving the goals we have set.

Turning our view again onto objects we conclude that a design which focuses
on the communication protocol, on events which are sent and received, will
naturally lead to a higher level of abstraction and less micromanagement, because
designing all those requests and responses at too low level would be tedious. The

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

30

http://www.manning-sandbox.com/forum.jspa?forumID=909

result will be that independently executing compartments will also be largely
independent in the source code. The benefits of such an architecture are
self-evident:

Components can be tested and verified in isolation.
Their implementation can be evolved without affecting their users.
New functionality corresponds to new communication protocols, which are added in a
conscious fashion.
Overall maintenance cost is lower.

Loose coupling between components—by design as well as at runtime—includes
another benefit: more efficient execution. Modern hardware does not advance any
more primarily by increasing the computing power of a single sequential execution

core, physical limits have started impeding our progress on this front around the15

year 2006 so our processors host more and more cores instead. In order to benefit
from this kind of growth we must distribute computation even within a single
machine. Using a traditional approach with shared state concurrency based on
mutual exclusion by way of locks the cost of coordination between CPU cores
becomes very significant.

Footnote 15 m The speed of light as well as power dissipation make further increases in clock frequency
impractical.

1.5.2 Better Resource Utilization

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

31

http://www.manning-sandbox.com/forum.jspa?forumID=909

Figure 1.7 The speed-up of a program using multiple processors in parallel computing is
limited by the sequential fraction of the program. For example if 95% of the program can
be parallelized, the theoretical maximum speedup using parallel computing would be 20
times, no matter how many processors are used.

Coordinating the access to a shared resource—for example a map holding the state
of your application indexed by username—means executing those portions of the
code which depend on the integrity of the map in some synchronized fashion. This
means that effects which change the map need to happen in a fashion inserialized
some order which is globally agreed upon by all parts of the application; this is
also called . There is an obvious drawback to such ansequential consistency
approach: those portions which require synchronization cannot be executed in
parallel, they run effectively single-threaded—even if they execute on different
threads only one can be active at any given point in time.

The effect this has on the possible reduction in runtime which is achievable by
parallelization is captured by Amdahl’s Law:

S(n)=T(1)/T(n)=1/(B+1/n(1-B))
Here is the number of available threads, is the fraction of the program thatn B

is serialized and is the time the algorithm needs when executed with threads.T(n) n

AMDAHL’S LAW

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

32

http://www.manning-sandbox.com/forum.jspa?forumID=909

This formula is plotted in the figure above for different values of across a rangeB
of available threads—they translate into the number of CPU cores on a real system.
If you look at it you will notice that even if only 5% of the program run inside
these synchronized sections and the other 95% are parallelizable, the maximum
achievable gain in execution time is a factor of 20, and getting close to that
theoretical limit would mean employing the ridiculous number of about 1000 CPU
cores.

The conclusion is that synchronization fundamentally limits the scalability of
your application. The more you can do without synchronization, the better you can
distribute your computation across CPU cores—or even network nodes. The
optimum would be to share nothing—meaning no synchronization is necessary—in
which case scalability would be perfect: in the formula above would be zero,B
simplifying the whole equation to

S(n)=n
In plain words this means that using times as many computing resources wen

achieve times the performance. If we build our system on fully isolatedn
compartments which are executed independently, then this will be the only
theoretical limit, assuming that we can split the task into at least compartments.n
In practice we need to exchange requests and responses, which requires some form
of synchronization as well, but the cost of that is very low. On commodity
hardware it is possible to exchange several hundred million events per second
between CPU cores.

Traditional ways to model interactions between components—like sending to and
receiving from the network—are expressed as blocking API calls:

Each of these interact with the network equipment, generating events and
reacting to events under the hood, but this fact is completely hidden in order to
construct a synchronous façade on top of the underlying event-driven system. This
means that the thread executing these commands will suspend its execution if not
enough space is available in the output buffer (for the first line) or if the response
is not immediately available (on the second line). Consequently this thread cannot

LOWER COST OF DORMANT COMPONENTS

// e.g. using Java API
final Socket socket = ...
socket.getOutputStream.write(requestMessageBytes);
final int bytesRead = socket.getInputStream().read(responseBuffer);

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

33

http://www.manning-sandbox.com/forum.jspa?forumID=909

do any other work in the meantime, every activity of this type which is ongoing in
parallel needs its own thread even if many of these are doing nothing but waiting
for events to occur.

If the number of threads is not much larger than the number of CPU cores in the
system, then this does not pose a problem. But given that these threads are mostly
idle, you would want to run many more of them. Assuming that it takes a few
microseconds to prepare the and a few morerequestMessageBytes

microseconds to process the , while the time for traversing theresponseBuffer

network and processing the request on the other end is measured in milliseconds, it
is clear that each of these threads spends more than 99% of its time in a waiting
state.

In order to fully utilize the processing power of the available CPUs this means
running hundreds if not thousands of threads even on commodity hardware. At this
point we should note that threads are managed by the operating system kernel for

efficiency reasons . Since the kernel can decide to switch out threads on a CPU16

core at any point in time (for example when a hardware interrupt happens or the
time slice for the current thread is used up), a lot of CPU state must be saved and
later restored so that the running application does not notice that something else
was using the CPU in the meantime. This is called and costscontext switch

thousands of cycles every time it occurs. The other part of using large numbers17

of threads is that the scheduler—that part of the kernel which decides which thread
to run on which CPU core at any given time—will have a hard time finding out
which threads are runnable and which are waiting and then selecting one such that
each thread gets its fair share of the CPU.

Footnote 16 m Multiplexing several logical user-level threads on a single O/S thread is called an many-to-one
model or green threads. Early JVM implementations used this model, but it was abandoned quickly
(http://docs.oracle.com/cd/E19455-01/806-3461/6jck06gqh/index.html).

Footnote 17 m While CPUs have gotten faster, their larger internal state negated the advances made in pure
execution speed such that a context switch has taken roughly 1µs since over a decade.

The takeaway of the previous paragraph is that using synchronous, blocking
APIs which hide the underlying event-driven structure waste CPU resources. If the
events were made explicit in the API such that instead of suspending a thread you
would just suspend the computation—freeing up the thread to do something
else—then this overhead would be reduced substantially:

// using (remote) messaging between Akka actors from Java 8

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

34

http://docs.oracle.com/cd/E19455-01/806-3461/6jck06gqh/index.html
http://www.manning-sandbox.com/forum.jspa?forumID=909

Here the sending of a request returns a handle to the possible future reply—a
composable Future as discussed in chapter two—upon which a callback is attached
that runs when the response has been received. Both actions complete immediately,
letting the thread do other things after having initiated the exchange.

The main benefits of event-driven designs are:

Event transmission between components allows a loosely coupled architecture with
explicit protocols.
“Share nothing” architecture removes scalability limits imposed by Amdahl’s law.
Components can remain inactive until an event arrives, freeing up resources.

In order to realize these, non-blocking and asynchronous APIs must be
provided which explicitly expose the system’s underlying event structure.

The most consequential common theme of the tenets of the Reactive Manifesto is
that distribution of services and their data is becoming the norm, and in addition
the granularity at which this happens is becoming more fine-grained. Multiple
threads or even processes on the same computer used to be regarded as “local”, the
most prominent assumption of which is that as long as the participants in a system
are running they will be able to communicate reliably. As soon as network
communication is involved we all know that communication dominates the
design—both concerning latency and bandwidth as well as concerning failure
modes.

With bulkheads between compartments that may fail in isolation and which
communicate only by asynchronous messages, all such interactions need to be
considered as distributed even if they just run on different cores of the same
CPU—remember Amdahl’s law and the resulting desire of minimizing
synchronization.

One of the most famous theoretical results on distributed systems is Eric Brewer’s

CAP theorem , which states that any networked shared-data system can have at18

most two of three desirable properties:

Future<Response> future = ask(actorRef, request, timeout)
 .mapTo(classTag(Response.class));
future.onSuccess(f(response -> /* process it */));

1.5.3 Summarizing the Why and How of Event Orientation

1.6 How does this Change the Way We Program?

1.6.1 The Loss of Strong Consistency

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

35

http://www.manning-sandbox.com/forum.jspa?forumID=909

Footnote 18 m S. Gilbert, N. Lynch, Brewer’s Conjecture and the Feasibility of Consistent, Available,
Partition-Tolerant Web Services, ACM SIGACT News, Volume 33 Issue 2 (2002), pg. 51-59,
http://lpd.epfl.ch/sgilbert/pubs/BrewersConjecture-SigAct.pdf

consistency (C) equivalent to having a single up-to-date copy of the data;
high availability (A) of that data (for updates); and
tolerance to network partitions (P).

This means that during a network partition we have to sacrifice at least one of
consistency and availability. In other words if we continue allowing modifications
to the data during a partition then inconsistencies can occur, and the only way to
avoid that would be to not accept modifications and thereby be unavailable.

As an example consider two users editing a shared text document using a
service like Google Docs. The document is hopefully stored in at least two
different locations in order to survive a hardware failure of one of them, and both
users randomly connect to some replica to make their changes. Normally the
changes will propagate between them and each user will see the other’s edits, but if
the network link between the replicas breaks down while everything else keeps
working, both users will continue editing, see their own changes but not the
changes made by the respective other. If both replace the same word with different
improvements then the result will be that the document is in an inconsistent state
that needs to be repaired when the network link starts working again. The
alternative would be to detect the network failure and forbid further changes until it
is working again—leading to two unhappy users who will not only be unable to
make conflicting changes but they will also be prevented from working on
completely unrelated parts of the document as well.

Traditional data stores are relational databases which provide a very high level
of consistency guarantees and customers of database vendors are accustomed to
that mode of operation—not least because a lot of effort and research has gone into

making databases efficient in spite of having to provide ACID transaction19

semantics. For this reason distributed systems have so far concentrated critical
components in such a way that provided strong consistency.

Footnote 19 m Atomicity, Consistency, Isolation, Durability

In the example of the two users editing the shared document, a corresponding
strongly consistent solution would mean that every change—every key
press—would need to be confirmed by the central server before being displayed
locally, since otherwise one user’s screen could show a state that was inconsistent

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

36

http://lpd.epfl.ch/sgilbert/pubs/BrewersConjecture-SigAct.pdf
http://www.manning-sandbox.com/forum.jspa?forumID=909

with what the other user saw. This obviously does not work because it would be
very irritating to have such high latency while typing text, we are used to the
characters appearing instantly. And this solution would also be quite costly to scale
up to millions of users, considering the High Availability setups with log
replication and the license fees for the big iron database.

Compelling as this use-case may be, reactive systems present a challenging
architecture change: the principles of resilience, scalability and responsiveness
need to be applied to all parts of the system in order to obtain the desired benefits,
eliminating the strong transactional guarantees on which traditional systems were
built.

Eventually this change will have to occur, though; if not for the benefits
outlined in the sections above then for physical reasons. The notion of ACID
transactions aims at defining a global order of transactions such that no observer
can detect inconsistencies. Taking a step back from the abstractions of
programming into the physical world, Einstein’s theory of relativity has the
astonishing property that some events cannot be ordered with respect to each other:
if even a ray of light cannot travel from the location of the first event to the
location of the second before that event happens, then the observed order of the
two events depends on how fast an observer moves relative to those locations.

While the time affected time window at the currently typical velocities with
which computers travel is extremely small, another effect is that events which
cannot be connected by a ray of light as described above cannot have a causal
order between them. Limiting the interactions between systems to proceed at most
at the speed of light would be a solution in order to avoid ambiguities, but this is
becoming a painful restriction already within today’s processor designs: agreeing
on the the current clock tick on both ends of a silicon chip is one of the limiting
factors when trying to increase the clock frequency.

Distributed systems therefore build on a different set of goals called BASE
instead of the synchrony-based ACID:

Basically Available
Soft-state (state needs to be actively maintained instead of persisting by default)
Eventually consistent

The last point means that modifications to the data need time to travel between
distributed replica, and during this time it is possible for external observers to see
data which are inconsistent. The qualification “eventually” means that the time

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

37

http://www.manning-sandbox.com/forum.jspa?forumID=909

window during which inconsistency can be observed after a change is bounded;
when the system does not receive modifications any longer and enters a quiescent
state it will eventually become fully consistent again.

In the example of editing a shared document this means that while you see your
own changes immediately you might see the other’s changes with some delay, and
if conflicting changes are made then the intermediate states seen by both users
might be different. But once the incoming streams of changes ends both views will
eventually settle into the same state for both users.

In a note written twelve years after the CAP conjecture Eric Brewer remarks:20

This [see above] expression of CAP served its purpose, which was to open the
minds of designers to a wider range of systems and tradeoffs; indeed, in the past
decade, a vast range of new systems has emerged, as well as much debate on the
relative merits of consistency and availability. The "2 of 3" formulation was
always misleading because it tended to oversimplify the tensions among properties.
Now such nuances matter. CAP prohibits only a tiny part of the design space:
perfect availability and consistency in the presence of partitions, which are rare.

Footnote 20 m E. Brewer, CAP Twelve Years Later—How the “Rules” Have Changed,
http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed

In the argument involving Einstein’s theory of relativity the time window
during which events cannot be ordered is very short—the speed of light is rather
fast for everyday observations. In the same spirit the inconsistency observed in
eventually consistent systems is also rather short-lived; the delay between changes
being made by one user and being visible to others is of the order of tens or maybe
hundreds of milliseconds, which is good enough for collaborative document
editing.

Only during a network partition is it problematic to accept modifications on
both disconnected sides, although even for this case solutions are emerging in the

form of CRDTs . These have the property of merging cleanly when the partition21

ends regardless of the modifications that were done on either side.

Footnote 21 m Conflict-free Replicated Data Types

Google Docs employ a similar technique called Operational Transformation .22

In the scenario that replicas of a document get out of sync due to a network
partition, local changes are still accepted and stored as operations. When the
network connection is back in working condition, the different chains of operations

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

38

http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed
http://www.manning-sandbox.com/forum.jspa?forumID=909

are merged by bringing them into a linearized sequence. This is done by rebasing
one chain on top of the other so that instead of operating on the last synchronized
state the one chain will be transformed to operate on the state which results from
applying the other chain before it. This resolves conflicting changes in a
deterministic way, leading to a consistent document for both users after the
partition has healed.

Footnote 22 m http://www.waveprotocol.org/whitepapers/operational-transform

Data types with these nice properties come with certain restriction in terms of
which operations they can support. There will naturally be problems which cannot
be stated using them, in which case one has no choice but to concentrate these data
in one location only and forego distribution. But our intuition is that necessity will
drive the reduction of these issues by researching alternative models for the
respective problem domain, forming a compromise between the need to provide
responsive services that are always available and the business-level desire of strong

consistency. One example of this kind from the real world are ATMs : bank23

accounts are the traditional example of strong transactional reasoning, but the
mechanical implementation of dispensing cash to account owners has been
eventually consistent for a long time.

Footnote 23 m Automated Teller Machine

When you go to an ATM to withdraw cash, you would be rather annoyed with
your bank if the ATM did not work, especially if you need the money to buy that
anniversary present for your spouse. Network problems do occur frequently, which
means that if the ATM rejected customers during such periods that would lead to
lots of unhappy customers—we know that bad stories spread a lot easier than
stories that say “it just worked as it was supposed to”. The solution is to still offer
service to the customer even if certain features like overdraft protection cannot
work at the time. You might for example only get a smaller amount of cash while
the machine cannot verify that your account has sufficient funds, but you still get
some bills instead of a dire “Out of Service” error. For the bank this means that
your account may have gone negative, but chances are that most peoples who want
to withdraw money actually do have enough to cover this transaction. And if the
account now turned into a mini loan then there are established means to fix that:
society provides a judicial system to enforce those parts of the contract which the
machine could not, and in addition the bank actually earns money by earning
interest as long as the account holder owes it money.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

39

http://www.waveprotocol.org/whitepapers/operational-transform
http://www.manning-sandbox.com/forum.jspa?forumID=909

This example highlights that computer systems do not have to solve all the
issues around a business process in all cases, especially when the cost of doing so
would be prohibitive.

Many of the discussed solutions and in fact most of the underlying problems are
not new. Decoupling the design of different components of a program has been the
goal of computer science research since its inception, and it has been part of the
common literature since the famous “Design Patterns” book by Gamma, Helm,
Johnson and Vlissides, published in 1994. As computers became more and more
ubiquitous in our daily lives, programming moved accordingly into the focus of
society and changed from an art practiced by academics and later by young
“fanatics” in their basements into widely applied craft. The growth in sheer size of
computer systems deployed over the past two decades led to the formalization of
designs building on top of the established best practices and widening the scope of
what we consider our charted territory. In 2003 Hohpe and Woolf published their
“Enterprise Integration Patterns” which cover message passing between networked
components, defining communication and message handling patterns—for example
implemented by the Apache Camel project. The next step was termed Service
Oriented Architecture.

While reading this chapter you will have recognized elements of earlier stages,
like the focus on message passing or on services. The question naturally arises
what this book adds that has not already been described sufficiently elsewhere.
Especially interesting is a comparison to the definition of SOA in Rotem-Gal-Oz’s
“SOA Patterns”:

DEFINITION: Service-oriented architecture (SOA) is an architectural style for
building systems based on interactions of loosely coupled, coarse-grained, and
autonomous components called services. Each service exposes processes and
behavior through contracts, which are composed of messages at discoverable
addresses called endpoints. A service’s behavior is governed by policies that are
external to the service itself. The contracts and messages are used by external
components called service consumers.

This focuses on the high-level architecture of an application, which is made
explicit by demanding that the service structure be coarse-grained. The reason for
this is that SOA approaches the topic from the perspective of business

1.6.2 The Need for Reactive Design Patterns

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

40

http://www.manning-sandbox.com/forum.jspa?forumID=909

requirements and abstract software design, which without doubt is very useful. But
as we have argued there are technical reasons which push the coarseness of
services down to finer levels and demand that abstractions like synchronous
blocking network communication are replaced by explicitly modeling the
event-driven nature of the underlying system.

Lifting the level of abstraction has proven to be the most effective measure in
increasing the productivity of programmers. Exposing more of the underlying
details seems like a step backwards on this count, since abstraction is usually
meant to hide complications from view and solving them once—and hopefully
correctly—instead of making mistakes while solving it over and over again. What
this consideration neglects is that there are two kinds of complexity:

Essential complexity is the part which is inherent in the problem domain.
Incidental complexity is that part which is introduced solely by the solution.

Coming back to the example with using a traditional database with ACID
transaction as the backing store for a shared document editor, the solution tries to
hide the essential complexity present in the domain of networked computer
systems, introducing incidental complexity by requiring the developer to try and
work around the performance and scalability issues that arise.

A proper solution exposes exactly all the essential complexity of the problem
domain, making it accessible to be tackled as is appropriate for the concrete use
case, and avoids burdening the user with incidental complexity which results from
a mismatch between the chosen abstraction and the underlying mechanics.

This means that as our understanding of the problem domain evolves—for
example recognizing the need for distribution of computation at much finer
granularity than before—we need to keep re-evaluating the existing abstractions in
view of whether they capture the essential complexity and how much incidental
complexity they add. The result will be an adaptation of solutions, sometimes
representing a shift in which properties we want to abstract over and which we
want to expose. Reactive service design is one such shift, which makes some
patterns like synchronous, strongly consistent service coupling obsolete. The
corresponding loss in level of abstraction is countered by defining new abstractions
and patterns for solutions, like rebasing the building blocks on top of a realigned
foundation.

The new foundation is event orientation, and in order to compose our
large-scale applications on top of it we need suitable tools to work with. The

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

41

http://www.manning-sandbox.com/forum.jspa?forumID=909

patterns discussed in the second part of this book are a combination of well-worn
and comfortable instruments like the Circuit Breaker as well as emerging patterns

learnt from wider usage of the Actor model . But a pattern does not only consist24

of a description of a prototypical solution, more importantly it is characterized by
the problem it tries to solve. The main contribution of this book is therefore to
discuss the patterns in light of the four tenets of the Reactive Manifesto.

Footnote 24 m Originally described by Hewitt, Bishop and Steiger in 1973; also covered among the tools of
the trade in chapter two.

The final remark on the consequences of reactive programming takes up the
strands which shine through in several places above already. We have seen that the
desire of creating self-contained pieces of software which deliver service to their
users reliably and quickly led us to a design which builds upon encapsulated and
independently executed units of computation. The compartments between the
bulkheads form private spaces for services which communicate only using
messages in a high-level messaging language.

These design constraints are very familiar from the physical world and from our
society: we humans also collaborate on larger tasks, we also perform our individual
tasks autonomously, communicate via high-level language and so on. This allows
us to visualize abstract software concepts using well-known, customary images.
We can tackle the architecture of an application by asking “How would you do it
given a group of people?” Software development is an extremely young discipline
compared to the organization of labor between humans over the past millennia, and
by using the knowledge we have built up we have an easier time breaking systems
down in ways which are compatible with the nature of distributed and autonomous
implementation.

Of course one should stay away from abuses of anthropomorphisms: we are
slowly eliminating terminology like “master / slave” in recognition that not

everybody takes the technical context into account when interpreting them . But25

even responsible use offers plentiful opportunity for spicing up possibly dull work
a little, for example by calling a component which is responsible for writing logs to
disk a . Then going about implementing that class will have the feel ofScribe

creating a little robot which will perform certain things that you tell it to and with

1.6.3 Bringing Programming Models Closer to the Real World

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

42

http://www.manning-sandbox.com/forum.jspa?forumID=909

which you can play a bit—others call that activity “writing tests” and make a sour
face while saying so. With reactive programming we can turn this around and
realize: it’s fun!

Footnote 25 m Although terminology offers many interesting side notes, e.g. a “client” is someone who obeys
(from latin cluere) while a “server” derives from slave (from latin servus)—so a client–server relationship is

 somewhat strange when interpreted literally. An example of naming which can easily prompt
out-of-context interpretation is a hypothetical method name like harvest_dead_children(); in the interest of reducing
non-technical arguments about code it is best to avoid such terms.

This chapter laid the foundation for the rest of the book, introducing the tenets of
the Reactive Manifesto:

responsiveness
resilience
scalability
event orientation

We have shown how the need to stay responsive in the face of component
failure defines resilience, and likewise how the desire to withstand surges in the
incoming load elucidates the meaning of scalability. Throughout this discussion we
have seen the common theme of event orientation as an enabler for meeting the
other three challenges.

In the next chapter we introduce the tools of the trade: event loops, futures &
promises, reactive extensions and the Actor model. All of these make use of the
functional programming paradigm, which we will look at first.

1.7 Summary

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and other simple mistakes.
These will be cleaned up during production of the book by copyeditors and proofreaders.

http://www.manning-sandbox.com/forum.jspa?forumID=909

43

http://www.manning-sandbox.com/forum.jspa?forumID=909

	Reactive Design Patterns MEAP v01
	Copyright
	Welcome
	Table of contents
	Chapter 1: Why Reactive?
	1.1 Systems and their Users
	1.2 Reacting to Users
	1.2.1 Responsiveness in a Synchronous System
	1.2.2 Why is responsiveness now more important than ever?
	1.2.3 Cutting Down Latency by Parallelization
	1.2.4 Choosing the Right Algorithms for Consistent Latency
	1.2.5 Bounding Latency even when Things go Wrong
	1.2.6 Summarizing the Why and How of Responsiveness

	1.3 Reacting to Failure
	1.3.1 Compartmentalization and Bulkheading
	1.3.2 Consequences of Distribution
	1.3.3 Delegating Failure Handling
	1.3.4 Summarizing the Why and How of Resilience

	1.4 Reacting to Load
	1.4.1 Determining Service Capacity
	1.4.2 Building an Elastic Service
	1.4.3 Summarizing the Why and How of Scalability

	1.5 Reacting to Events
	1.5.1 Loose Coupling
	1.5.2 Better Resource Utilization
	1.5.3 Summarizing the Why and How of Event Orientation

	1.6 How does this Change the Way We Program?
	1.6.1 The Loss of Strong Consistency
	1.6.2 The Need for Reactive Design Patterns
	1.6.3 Bringing Programming Models Closer to the Real World

	1.7 Summary

	Chapter 2: Tools of the Trade
	2.1 The Impact of Choosing Non-Reactive Tools
	2.1.1 The Cost

	2.2 Functional Programming
	2.2.1 Immutability
	2.2.2 Side Effects
	2.2.3 Referential Transparency
	2.2.4 Functions as First-Class Citizens

	2.3 Responsiveness to Users
	2.3.1 The Cost of Abstractions
	2.3.2 Throughput
	2.3.3 Latency
	2.3.4 Footprint
	2.3.5 Prioritizing the Performance Characteristics

	2.4 Implementations That Support Reactive
	2.4.1 Green Threads
	2.4.2 Event Loops
	2.4.3 Communicating Sequential Processes
	2.4.4 Futures and Promises
	2.4.5 Reactive Extensions
	2.4.6 The Actor Model
	2.4.7 Summary

